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Many data analytic questions can be formulated as (noisy) optimization problems. They
explicitly or implicitly involve ®nding simultaneous combinations of values for a set of (``in-

put'') variables that imply unusually large (or small) values of another designated (``output'')
variable. Speci®cally, one seeks a set of subregions of the input variable space within which the
value of the output variable is considerably larger (or smaller) than its average value over the

entire input domain. In addition it is usually desired that these regions be describable in an
interpretable form involving simple statements (``rules'') concerning the input values. This
paper presents a procedure directed towards this goal based on the notion of ``patient'' rule
induction. This patient strategy is contrasted with the greedy ones used by most rule induction

methods, and semi-greedy ones used by some partitioning tree techniques such as CART.
Applications involving scienti®c and commercial data bases are presented.

Keywords: Data Mining, noisy function optimization, classi®cation, association, rule in-

duction

1. Introduction

The purpose of many data analyses can be viewed in the
context of ``prediction''. The data base contains repeated
observations of a designated ``output'' variable y along
with simultaneous values of additional ``input'' variables
x � �x1; x2; � � � ; xn�. The goal is to use these data

fyi; xigN
1 �1:1�

to determine likely values of y for speci®ed (future) values
of the inputs x. Supposing the data (1.1) is a random sample
from some (unknown) joint distribution with probability
density p�y; x�, this goal can be characterized as trying to
obtain the probability density of y-values at each x

p�yjx� � p�y; x�R
p�y; x�dy

which is most simply (if incompletely) described by its ®rst
moment

f �x� � E�y j x� �
Z

y p�y jx� dy: �1:2�

This quantity (1.2) is well known to minimize mean-
squared prediction error at each x

f �x� � argmin
f

E��y ÿ f �2j x�:

Expressing the output variable as

y � E�y j x� � �y ÿ E�y j x�� � f �x� � e �1:3�
one sees that this prediction problem can be cast as one of
function estimation where the goal is to approximate
(``learn'') a deterministic ``target'' function f (x) from a set
of observations where its value (at each x) is corrupted by
random noise e. This noise represents the random distri-
bution of the output y about its mean value f (x), at each x,
and characterizes the fact that specifying a simultaneous set
of input values does not specify a unique y-value; other
factors, not captured by the set of measured inputs, in¯u-
ence the output value.

Although restricting attention to the ®rst moment (1.2)
greatly simpli®es the problem, it is still a formidable one.
The problem of accurately approximating a general func-
tion of many arguments, everywhere within some domain
of input values, based on sampled data (with or without
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noise) remains a di�cult one. As such, it has been the focus
of much research in the ®elds of mathematics, neural net-
works, machine learning, and statistics (see Lorentz, 1986,
Bishop, 1995, Ripley, 1996, Mitchell, 1997, and Wahba,
1990). The set of functions amenable to accurate approxi-
mation with current methodology is still relatively small
and there may well be many target functions to be en-
countered in practice that remain elusive.

Often, function approximation is applied in situations
for which the actual data analytic goal is far more modest;
the interest is in some property of the target function. A
common procedure in such situations is to attempt to es-
timate the target f (x) everywhere in the input space and
ascertain the property of interest from the resulting esti-
mate f̂ (x). Frequently however, this strategy can be
counter-productive in that an alternative one focused di-
rectly on estimating the property of interest may give rise to
higher accuracy.

One example of this phenomenon is (2-class) classi®ca-
tion. Here the output variable y assumes two values, y � 0
indicating the ®rst class and y � 1 indicating the second.
The target function is

f �x� � E�y j x� � Pr�y � 1 j x� �1:4�
and the optimal (minimum error) classi®cation decision is

y � 1�f �x > 1=2�; �1:5�
where 1(�) takes the value one when its argument is true
and zero otherwise. It is common to apply function ap-
proximation methodology in this situation, inserting the
estimate f̂ (x) in (1.5) to make predictions ŷ. Vapnik (1995)
and Friedman (1997) have shown that this can provide
poor performance relative to procedures that try to directly
estimate the decision boundary f �x� � 1=2, and sometimes
leads to counter-intuitive results. For example improving
the quality of the function estimate can actually degrade
classi®cation performance.

Another example is (univariate) density estimation where
the target f �x� is the relative probability of an observation
at x. The property of interest is the cumulative distribution
function

F �x� �
Zx

ÿ1
f �x0� dx0: �1:6�

Inserting the optimal kernel density estimate of f �x� in
(1.6) leads to a lower accuracy estimate of F �x� than simply
using the raw data as the density estimate

F̂ �x� � 1

N

XN

i�1
1�xi � x�

[Hall (1989)]. The raw data is of course a very much poorer
estimate of the density f �x� itself.

Another (trivial) example is when the property of interest
is the mean of the target function over the entire input space

�f �
Z

f �x�p�x� dx �1:7�

Here the sample output mean

�y � 1

N

XN

i�1
yi �1:8�

is likely to provide higher accuracy than taking the mean of
some estimate f̂ (x) derived from the data.

2. Function optimization

Function approximation often is applied in contexts where
the property of interest is the optimal (maximum or mini-
mum) values of the target f (x) (1.2). Speci®cally, one seeks
a subregion of the space of input values within which the
average value of target is much larger (or smaller) that its
average over the entire input space (1.7). Since minimizing
a function can be achieved by maximizing its negative, only
maximization is considered here without loss of generality.
Let Sj be the set of all possible values for the input
variable xj

fxj 2 Sjgn
j�1: �2:1�

The individual Sj could represent real (perhaps discrete)
values, or categorical (unorderable) values. The entire in-
put domain S can then be represented by the n-dimensional
(outer) product space.

S � S1 � S2 � � � � � Sn: �2:2�
The goal is to ®nd a subregion R of the input domain S,
R � S, for which

�fR � avex2Rf �x�
�
Z

x2R

f �x�p�x� dx
.Z
x2R

p�x� dx � �f �2:3�

where �f is the average over the entire input space (1.7). An
important property of any such subregion is its size
(``support'')

bR �
Z

x2R

p�x� dx: �2:4�

As will be seen there is generally a trade-o� between the
values of �fR and bR in that larger values of the latter tend to
lead to smaller values of the former.

Straightforward estimates of these quantities (2.3) (2.4)
respectively will be used:

b̂R �
1

N

X
xi2R

1�xi 2 R�; �yR �
1

N � b̂R

X
xi2R

yi; �2:5�

where fyigN
1 are the observed (noisy) output values (1.1)

(1.3). Although fyigN
1 are used to perform the averages it is
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important to keep in mind that the quantity of interest is �fR
(2.3). This will have important implications on the strategy
employed.

3. Direct applications

There are many circumstances in which attention is directly
focused on the extremes of the target function f (x) (1.3). In
forecasting future returns of ®nancial securities one is
generally interested in identifying those that provide the
highest return. Here the output y is the return and the in-
puts x might be past returns and various economic factors.
The support bR (2.4) represents the fraction of potential
bets. In market research y might represent some customer
behavior and the inputs x would be various demographic
variables. The support bR is the size of the identi®ed market
segment. In medical applications the output could be a
measure of severity of an illness and the inputs various
symptoms and medical measurements. The goal would be
to identify the characteristics of the most severely ill pa-
tients, perhaps for further diagnostic testing or especially
aggressive treatment. Here the support is the fraction of
patients for which such testing or treatment is feasible.
In industrial process control one is often interested in

maximizing some measure of quality (strength, durability,
etc.) of the resulting product. Here y is the quality measure
and the inputs x are various parameters that control the
process (concentrations of various chemicals, tempera-
tures, mixing times, etc.) Sometimes there are various
characteristic quantities fzkgK

1 associated with a product
(operating voltages, currents, impedances) that have asso-
ciated target values ftkgK

1 . The goal is to ®nd values of the
process control parameters x that result in characteristic
values simultaneously close to their targets. Here y could be
taken to be

y � ÿ
XK

k�1
�zk ÿ tk�2:

In these process control applications the support bR is
generally of no direct interest. It can be viewed as a ``meta-
parameter of the procedure whose value is taken to be as
small as possible consistent with maximizing �fR (2.3) as
opposed to �yR (2.5).

In all of these applications, as well as most others in data
analysis, the output variable y represents noisy measure-
ments of the target f (x). The set of observed inputs seldom
completely characterize all possible factors that in¯uence
values of the output.

4. Indirect applications

Besides those that directly focus on optimization, there are
many other commonly applied data analytic procedures

that can be cast within that framework. One such example
is classi®cation. Here the actual output quantity assumes
(unorderable) categorical values fckgK

1 . In this case there
are K (``dummy'') output variables fyk � 1�class � ck�gK

1 .
The inputs x represent the predictor variables. The goal is
to identify those regions of the input space within which an
observation is most likely to be from one of the individual
classes. These are the regions where the corresponding
target

fk�x� � E�yk j x� � Pr�yk � 1 j x�
is larger than that of any other class. Thus, classi®cation can
be viewed as ®nding regions in which each fk�x� is relatively
large. The support (2.4) (2.5) of each of the regions can be
regarded as meta-parameters jointly optimized to maximize
classi®cation accuracy if prediction is the goal, or chosen to
aid interpretability in more data analytic situations.

Another commonly applied data analytic procedure is
clustering. Here the goal is to ®nd regions of the data space
that are relatively densely populated. That is, the data
probability density p�x� is large compared to some desig-
nated reference density p0�x� usually (but not always) taken
to be a uniform distribution over the range of the data.
Regions where the ratio

r�x� � p�x�=p0�x� �4:1�
is large represent local concentrations of data in excess of
that predicted by p0�x� (``clusters''). Regions where r�x� is
small (ÿr(x) large) represent local lack of data (``holes'')
that also may be of interest.

The ratio (4.1) can be maximized by assigning an output
value y � 1 to each data observation. A Monte Carlo
sample of comparable size is then generated from the ref-
erence distribution p0(x) and assigned the output values
y � 0. The target function

f �x� � E�y j x� � r�x�=�1� r�x��
(over the pooled data) is monotonic in r(x) so that its
maxima/minima represent clusters/holes.

A problem closely related to clustering is association.
Here one seeks regions of the data space that are more/less
densely populated than would be the case if the data
variables were independent of each other. In this case p0(x)
is taken to be the density closest to that of the data p(x)
under the constraint of independence

p0�x� �
Yn

j�1
pj�xj�; �4:2�

where each factor in the product is the marginal distribu-
tion of the respective data variable

pj�xj� �
Z

p�x�
Y
j0 6�j

dxj0 : �4:3�

A random sample from this independent density (4.2) (4.3)
is easily generated from the data itself. Each xj-value for
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each (``Monte Carlo'') observation is randomly selected
with equal probability from the collection of all xj data
values.

As the above discussion illustrates many data analysis
problems can be cast in an optimization framework where
the objective function is observed with superimposed noise.
Procedures that locate regions of the input space where this
target assumes relatively large values represent (in princi-
pal) potential solutions to these problems.

5. Interpretability

In descriptive data analysis interpretability becomes an
important issue. One would like to restrict solutions to
those that can be described and interpreted in terms of
important characteristics of the problem, even if this may
sacri®ce some power. For the problem considered here, this
implies that the solution region R (2.3) be speci®ed by
simple statements (logical conditions) involving the values
of the individual input variables fxjgn

1. Such ``rules'' take
the form

R �
[K
k�1

Bk: �5:1�

That is, the solution region is taken to be the union of a set
of simply de®ned subregions fBkgK

1 . Let sjk represent a
subset of the possible values of input variable xj; that is
fsjk � Sjgn

1 where each Sj (2.1) represents all possible xj-
values. Then each Bk (5.1) is taken to be a ``box''

Bk � s1k � s2k � � � � � snk �5:2�
within the entire input space (2.2). Each box (5.2) is de-
scribed by the intersection of subsets of values of each input

x 2 Bk �
\n
j�1
�xj 2 sjk�: �5:3�

For inputs that are real (perhaps discretely) valued, the
subsets are represented by contiguous subintervals

sjk �
�
tÿjk ; t

�
jk

�
: �5:4�

Thus, the projection of a box Bk on the subspace of real
valued inputs is a hyper-rectangle. For categorical inputs
the individual subsets of values sjk are explicitly delineated.
Note that for the case in which the subset of values (real or
categorical) is in fact the entire set sjk � Sj, the corre-
sponding factor xj 2 Sj can be omitted form the box de®-
nition (5.3). In this case it takes the simpler from

x 2 Bk �
\

sjk 6�Sj

�xj 2 sjk�: �5:5�

The particular input variables xj for which sjk 6� Sj are said
to be those that ``de®ne'' the box Bk. As an example, for the
marketing data base described in Section 15 the rule

x 2 Bk �
18 < age < 34 &
marital status2 fsingle, living together-not
married g &
householder status = rent

8><>:
de®nes one of the boxes comprising the subregion associ-
ated with high frequency of visiting bars and night clubs.

6. Covering

From (2.3) (5.1) one sees that the goal of the optimization
procedure is to induce a set of boxes (5.5) from the data
(1.1) that collectively cover the region of the input space
where the target f (x) assumes large values. Given an al-
gorithm for constructing boxes from data (see Section 7)
this can be accomplished by ``covering'' [see Mitchell
(1997)]. The same box construction algorithm is repeatedly
applied in a sequential manner to subsets of the data. The
®rst box B1 is induced using the entire data set (1.1). The
second B2 is constructed using the original data with those
observations covered by the ®rst box removed:
B2 � fyi; xi j xi j2B1g. At the Kth iteration a box BK is in-
duced using the data remaining after the removal of all
observations covered by the K ÿ 1 previously induced
boxes: BK � fyi; xi j xi j2

SKÿ1
k�1 Bkg. This continues until ei-

ther the estimated target means within the boxes

�yK � ave yi j xi 2 BK & xi j2
[Kÿ1
k�1

Bk

" #
�6:1�

become too small, say less than the global mean �y (1.8), or
their individual support

bK �
1

N

XN

i�1
1 xi 2 BK & xi j2

[Kÿ1
k�1

Bk

 !
�6:2�

becomes too small.
The set of boxes induced in this manner can then be used

to form the ®nal region (5.1) according to the speci®c data
analytic goal. One might select those whose mean (6.1) is
greater than some threshold �y0

R �
[
�yk> �y0

Bk;

or perhaps choose the subset that yields the largest region
mean �yR (2.5) for a speci®ed support bt

bR �
XK

k�1
bk ' bt:

Here fbkg are the individual box supports (6.2). Alterna-
tively, one can regard the sequence of induced boxes, along
with their respective means, as an ordered set (``decision
list'') [Rivest (1987)]

f�yk;BkgK
1 : �6:3�
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An input point x that is covered by more than one box is
assigned to the one appearing ®rst in the list, and associ-
ated with its box mean.

7. Box induction

Central to the optimization algorithm is the procedure used
to construct the individual boxes. Given the data (or a
subset thereof), its goal is to produce a box B within which
the target mean

�fB �
Z

x2B

f �x�p�x� dx
�Z
x2B

p�x� dx �7:1�

is as large as possible consistent with the interpretability
constraint (5.5). The strategy employed is one of ``patient''
top-down successive re®nement followed by bottom-up
recursive expansion.

7.1. Top±down peeling

This ®rst phase of the box induction strategy begins with a
box B that covers all of the data. At each step (iteration) a
small subbox b within the current box B is removed. The
particular subbox b� chosen for removal, to produce the
next (smaller) box in the sequence, is the one that yields the
largest output mean value within the next box Bÿ b�

b� � arg max
b2C�b�

ave�yi j xi 2 Bÿ b�: �7:2�

Here C�b� represents a class of potential subboxes eligible
for removal. The current box is then updated

B Bÿ b� �7:3�
and the procedure repeated on this newer smaller box. This
``peeling'' away of small subboxes continues until the
support within the current box bB falls below some
threshold value b0

bB �
1

N

XN

i�1
1�xi 2 B� � b0: �7:4�

The quantity b0 is a ``meta''-parameter of the procedure. A
choice for its value involves both statistical and problem
domain dependent considerations. These are discussed in
Section 9.

The class of boxes C�b� eligible for peeling (7.2) is
dictated by the interpretability constraint (5.5). Each eli-
gible subbox b is de®ned by a single input variable xj.
(a) Real valued inputs each provide two eligible sub-

boxes, bjÿ and bj�, which border the respective lower and
upper boundaries of the current box B on the jth (real)
input

bjÿ � x j xj < xj�a�
� 	

bj� � x j xj > xj�1ÿa�
� 	

:
�7:5�

Here xj�a� is the a-quantile of the xj-values for data within
the current box, and xj�1ÿa� is the corresponding �1ÿ a�-
quantile. The quantity a is another meta-parameter usually
taken to be quite small �a � 0:1�. Particular values are
dictated by statistical considerations detailed in Section 8.
(b) Each categorical variable xj contributes a set of eli-

gible boxes, one for each of its values sjm within the current
box

bjm � fx j xj � sjmg; sjm 2 Sj: �7:6�
The complete class C�b� of eligible subboxes (7.2) is the
collection of all of those de®ned on the respective input
variables. The data within each one is (in turn) provision-
ally removed and the mean over the remaining observa-
tions in the current box calculated. The data within the
subbox b� that gives rise to the largest such (remaining)
mean is that permanently removed to de®ne the next
smaller box (7.3).

The use of various types of peeling procedures in the
context of multivariate statistical analysis was introduced
by Barnett (1976) and employed by Green (1981). Donoho
and Gasko (1992) used this concept to de®ne robust a�ne
equivariant estimators of multivariate location.

7.2. Bottom±up pasting

The goal of the top±down peeling algorithm is a box cov-
ering a subregion of the input variable space within which
the target mean (7.1) is relatively large. The boundaries
(5.5) of this box are determined by particular values of
those variables that de®ned the subboxes (7.5) (7.6) chosen
for peeling (7.2) at the various stages of the top±down re-
®nement procedure. Except for the last one, these ®nal box
boundaries were determined at earlier steps of the peeling
sequence without knowledge of later peels that further re-
®ned the boundaries on other input variables. It is there-
fore possible that the ®nal box can be improved by
readjusting some of its boundaries. This is done through a
bottom±up ``pasting'' strategy.

This pasting algorithm is basically the inverse of the
peeling procedure. Starting with the peeling solution, the
current box B is iteratively enlarged by pasting onto it a
small subbox b�, B B

S
b�. The small subbox b� chosen

is the one from an eligible class b 2 C�b� that maximizes
the output mean in the new (larger) box. The eligible class
of pasting subboxes is de®ned analogously to those used
for peeling (7.5) (7.6). For each input variable xj, eligible
subboxes b are bounded by the current box boundaries
on all other variables fxj0 gj0 6�j. For categorical variables
xj, values sjm (7.6) not represented in the current box B
de®ne subboxes b eligible for pasting. For real valued xj,
eligible subboxes are represented by small intervals ex-
tending the upper and lower boundaries of B on that
variable. The widths of each of these intervals is chosen
so as to contain aNB observations, where a is the peeling
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fraction (7.5) and NB is the number of observations in the
current box B.

Bottom-up pasting is iteratively applied, successively
enlarging the current box, until the addition of the next
subbox b� causes the output mean �yB�b� to decrease. At
that point pasting stops and the current box B becomes the
solution. Although bottom-up pasting usually provides
some improvement, it seldom has a dramatic e�ect. There
are occasions however when it does produce substantial
improvement to the peeling solution.

8. Patient rule induction

There are two principal meta-parameters that control box
induction; they are the peeling fraction a (7.5) and the
support b0 (7.4) of the peeling solution. Statistical per-
formance considerations govern the choice of a value for
a. These are discussed in this section. Choosing a value
for b0 involves both statistical and application domain
dependent considerations. These are discussed in Sec-
tion 9.

In order to discuss statistical performance a formal
(idealized) goal must be speci®ed as well as a measure of
how well that goal is achieved. For a given value of b0 the
formal goal of box induction can be expressed as maxi-
mizing the mean of the target function f (x) within a box
(7.1) with respect to the box parameters sjk (5.3), under a
constraint on box support, b � b0. That is,

�f � � max
B

ave�f �x� j x 2 B�; bB � b0: �8:1�

Let f̂ be the solution (estimate) induced by the peeling
algorithm when applied to data. Then one measure of
performance is average (expected) mean-squared error

E
�

�f � ÿ f̂
�2 � ÿ �f � ÿ Ef̂

�2 � E
�
f̂ ÿ Ef̂

�2
: �8:2�

The expected value (8.2) represents the squared-error of f̂
averaged over all data sets of size N that could have been
realized from the system under study. The actual data at
hand (1.1) is presumed to be one of these data sets drawn
at random. The quantity Ef̂ is the average over all data
sets of the estimated solution for each one. The ®rst term
on the right of (8.2) is the deviation of this average from
the truth and represents the squared systematic error
(``bias-squared''). The second right hand term is the
variance of the solutions over all data sets. It character-
izes the instability of the procedure. High instability im-
plies that the solution is very sensitive to small changes in
the data. This not only reduces accuracy, but it is espe-
cially troublesome from the perspective of interpretation.
It is dangerous to place high con®dence on induced fea-
tures (i.e. box boundaries) if slight changes to the data
strongly a�ect the nature and/or existence of those fea-
tures.

8.1. Fragmentation

Top-down successive re®nement procedures such as peeling
can be viewed as steepest ascent with a limited number of
steps. Each iteration produces the step that is estimated to
provide the greatest local increase in the objective function,
here box mean. This ``greedy'' step is seldom optimal in
terms of being the one that moves closest to the ultimate
solution. If a very large number of steps is possible then
this lack of optimality represents only a computational is-
sue; a large enough number of greedy steps will eventually
arrive at a maximum.

In the case of top-down successive re®nement, a large
number of steps is not possible. This is due to data frag-
mentation. Each step reduces the amount of data available
to the next step. At some point there is not enough re-
maining data to continue. The box support b has fallen
below the stopping threshold b0.
For a given data set size N the number of steps is de-

termined by the amount of fragmentation (``greed'') per-
mitted at each one. With a greedy strategy a large fraction
of the data is removed at each step allowing for only a
small number of iterations. This restricts the ability of the
procedure in later steps to compensate for early steps that
may have been highly suboptimal. This can have detri-
mental e�ect on both bias and variance (8.2) leading to
increased mean squared error. Bias is induced when the
best step at an early iteration is unambiguous but, due to
the nature of the target function, is misdirected. Variance is
induced when the best step is ambiguous; there are several
possibilities that provide similar local improvement in
target mean. In this case the choice among them is driven
largely by the noise, making it highly sensitive to small
changes in the data. With a greedy strategy there are only a
few steps so each one has a large e�ect on the ®nal out-
come. There is little opportunity to mitigate the damage
caused by a bad step.

In the context of box induction very greedy strategies
pose another potential problem. Only a small number of
input variables can be involved in de®ning the box
boundaries (5.5). In order for an input to participate it
must be chosen for peeling at least once in the top-down
sequence. If the number of inputs n is large and the number
of steps small, only a small fraction of the input variables
can be involved. While this may represent an interpreta-
tional advantage, it can introduce severe bias and variance
when more than a few inputs are required to isolate the
target maximum.

8.2. Patience

The problem of fragmentation with top-down re®nement
procedures can be mitigated by adopting a ``patient''
strategy; only a small fraction of the data in the current box
is removed at each iteration. This makes each individual
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step less important to the ®nal outcome (variance) and
permits greater opportunity for later steps to take advan-
tage of structure uncovered by earlier ones and/or to
compensate for those that were misdirected (bias). Also,
more input variables are permitted (but not required) to
enter into the de®nition of the induced box.

For real valued input variables, the degree of patience of
the box induction algorithm (Section 7.1) is controlled by
the value of the peeling parameter a (7.5). If all inputs
(chosen for peeling) are real with distinct values the num-
ber of steps (peels) L is

L � log b0= log�1ÿ a�:
The above discussion suggests choosing the smallest value
possible for a in order to achieve the maximum degree of
patience. This would be a � 1=NB where NB is the number
of observations in the current box; one observation is
peeled o� at each step.

However the parameter a serves another role; it is also a
smoothing parameter. The goal of each peel is to maximize
the average of the target function f (x) in the next smaller
box Bÿ b. The variance of the estimate of this is propor-
tional to

1

a
var�e j x 2 b� �8:3�

where e is the random noise (1.3). Since the goal is to have
the peeling driven by signal f (x) rather than the noise e, the
value of a cannot be made too small. There is a trade-o�
between the goals of patience and accurate peeling that
depends on the signal to noise ratio and total sample size.
Empirical evidence so far suggests that the peeling proce-
dure is not sensitive to the value of a provided it is not too
large; patience appears to be the more important goal.
Values in the range 0:05 � a � 0:1 seem to work well.
Methods for estimating an optimal value from the data at
hand are discussed in Section 13.

For input variables that are categorically valued, or real
with a small number of distinct values, the degree of pa-
tience cannot be controlled with precision. All observations
with identical values on an input variable are considered
together. Patience is encouraged by making only a single
value eligible for peeling at each step. Thus, peeling on
variables with more (discrete) values induces more pa-
tience. Methods for encouraging patience in this context
are discussed in Section 14. Owing to its emphasis on pa-
tience, the procedure described herein is referred to as a
patient rule induction method (``PRIM'').

9. Stopping rule

Peeling stops when the support bB of the current box B is
below a chosen threshold b0 (7.4). Choice of a value for b0

depends on the data analytic goal. Sometimes the goal is a

``point'' estimate of the location of the function maximum.
The industrial process control problems discussed in Sec-
tion 3 are examples. In this case one would like the value of
b0 to be as small as possible consistent with accurate esti-
mation of a maximum of f (x). Because the function is
measured with noise (1.3) it can be counter productive to
allow the value of bB to become arbitrarily small. The
peeling procedure uses the output mean �yB (7.2) as an es-
timate of the function mean �fB (7.1) in each successive box.
This estimate becomes less reliable with smaller values of
box support bB and the peeling procedure can be distracted
by noise; the value of �yB can continue to increase whereas
the value of �fB actually decreases. This ``over-®tting''
phenomenon is common to all procedures that optimize on
random data.

9.1. Cross-validation

A common procedure used to deal with over-®tting is
cross-validation. The data set is randomly partitioned into
two parts, a ``learning'' data set and a ``test'' data set.
Typically the learning set is taken to be twice the size of the
test set. The peeling procedure is applied to the learning
data with a very small value for b0, allowing for very small
box supports. The test data set is then used to estimate the
output mean �yB in each successive box of the peeling se-
quence induced on the training data. If the noise associated
with the test data is independent of that for the training
data this will produce unbiased estimates of the target
mean �fB in each box. The box with the largest associated
(test) mean is taken as the estimated optimal one contain-
ing the target maximum.

9.2. Application domain

Often, application domain considerations place constraints
on the support of the induced box. The support of the
cross-validated estimate of the optimal box may be too
small to be useful. It may identify characteristics of ®nan-
cial securities with very high return, but the support may be
too small to allow su�ciently frequent betting. A highly
desirable market segment may be located but be too small
to be worth targeting. In some applications there may be a
pro®tability threshold and one seeks boxes with largest
support whose mean is above that threshold. In all of these
cases there may be boxes that have much larger support
than the estimated optimal one, but only slightly smaller
estimated target mean. These ``suboptimal'' boxes may be
more useful in particular applications.

Application domain judgements such as the trade-o�
between box mean and support are best made by the user.
The user can be presented with the mean and support of
each of the L boxes in the (nested) peeling sequence fBlgL

1,

f�yl; blgL
1 ; �9:1�
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as computed on the (left out) test data set. The one most
appropriate for the application at hand can then be chosen.
This may be the ``optimal'' one with largest estimated mean
or one that has a smaller mean but larger support. After this
choice is made, bottom-up pasting (Section 7.2) can then be
applied to further improve the mean-support trade-o�.

Figure 1 shows a scatter plot of �yl against bl (9.1) for the
®rst sequence of boxes induced from the geology data de-
scribed in Section 11. Such a plot will be referred to as a
``peeling trajectory''. The box mean �yl is seen to steadily
increase with decreasing support bl with the exception of
three small bumps. The optimal solution is �y35 � 0:97 at
b35 � 0:028. If the support of this box is too small another
candidate might be �y24 � 0:95 at b24 � 0:081. It has slightly
lower estimated mean but almost three times the support.
Other choices may represent more useful alternatives and
the user is free to choose the one most appropriate. In-
volving the user in this manner helps insure that the in-
duced boxes best serve the particular data analytic goal.

10. Redundant input variables

In addition to target mean and support, a box B is char-
acterised by the set of input variables that de®ne it (5.5).
The ``complexity'' of a box can be de®ned as the cardinality
of this set. For a given mean and support, less complex
boxes are preferred due to their simpler interpretation. As
noted in Section 8.2 an important property of patient rule
induction is that it allows more complex boxes to be in-
duced. This represents an important advantage when such
complexity is required, reducing bias. However, it has the
side e�ect that nonessential inputs can also enter into the
box de®nition. These ``redundant'' inputs cause increased
complexity, thereby clouding interpretation without re-
ducing bias.

There are two mechanisms that can cause redundant
inputs, noise and collinearity. The noise e (1.3) induces
variance in the estimate of the best peeling variable at each
iteration. This can cause irrelevant variables to be selected

owing to sampling ¯uctuations. As discussed in Section 8.2
this is the motivation for not choosing the peeling param-
eter a too small (8.3). Although e�ective, this strategy
cannot perfectly screen out irrelevant input variables.

Collinearity occurs when there is a high degree of cor-
relation among two or more input variables within the
solution box. In this case, only one of the variables in the
correlated group is needed as part of the box de®nition,
namely the one with the most restrictive range of values. By
virtue of its correlations with the others in the group, re-
stricting its range along serves to restrict the ranges of the
other variables.

Whether induced by noise or collinearity, redundant
input variables can be pro®tably deleted from the set (5.5)
de®ning the box. In the case of irrelevant inputs induced by
noise this can serve to increase accuracy in terms of pro-
viding higher box mean and support. Even when this is not
the case the interpretative value associated with removing
marginally relevant inputs can sometimes outweigh a small
decrease in estimated box mean. Such decisions are likely
to depend on problem speci®cs and, as with choosing box
support, are best judged by the user. Domain knowledge
can sometimes help in deciding whether particular input
variables that appear marginal on statistical grounds ac-
tually are likely to be relevant or not.

In order to make such judgements a statistical measure is
required of each input variable's relevance in de®ning the
box. One such measure is the decrease in box mean when
the variable is removed. Let xj be one of the variables in-
volved in the box de®nition (5.5). It can be removed by
replacing its corresponding subset of values sjk by the set of
all possible xj-values Sj,

sjk  Sj: �10:1�
The corresponding decrease in box mean is then recorded.
The de®ning input with the smallest such decrease is
deemed to be the best relevant one and is (provisionally)
removed. This procedure is then repeated on the remaining
inputs identifying the second least relevant input variable
and it is provisionally deleted. This continues until there is
only one input variable left in the box de®nition. This one
is regarded as the most relevant box variable. The sequence
of deleted inputs induced in this manner orders the input
variables in ascending relevance to box the de®nition.

Table 1 presents the results of this backward stepwise
elimination procedure on the box ��y � 0:95; b � 0:07� of
the geology data peeling trajectory shown in Fig. 1. It is
seen to be de®ned by four (out of 11) input variables
j 2 f1; 2; 5; 6g. The ®rst row of Table 1 represents this box
and the next four rows represent the results of removing
each de®ning variable (in turn) in order of estimated rele-
vance. The ®rst column labels the variable removed and the
next two are respectively the box mean and support as a
result of the removal, estimated from the (left out) test
data.

Fig. 1. First peeling trajectory for the geology data. Mean vs.
support for boxes induced by top-down peeling. Most appropriate
trade-o� is chosen by the user
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One sees from Table 1 that removing x1 from the box
de®nition actually provides a slight increase in estimated
box mean. Removing x1 and x6 results in a slight decrease
whereas removing x1, x6 and x2 produces a dramatic de-
crease of target mean inside the box now de®ned only by
x5. Of course, also removing x5 produces the starting box
enclosing all of the data. Note that box support always
increases as variables are removed.

Given a box chosen from the peeling trajectory (Fig. 1)
the corresponding results from the backward stepwise
procedure, as represented in Table 1, can be employed by
the user to judge trade-o�s between box complexity, mean,
and support. In this way the user's domain knowledge as
well as the data analytic requirements can be taken into
account. For this particular example (Table 1) the choice is
rather obvious. Removing x1 and x6 produces a box with
one half the complexity and 35% more support than the
originally induced one, with only slightly lower estimated
target mean. In many other situations, however, the
choices are not so obvious and the user's knowledge and
judgement become valuable assets.

11. Geology data

The data set used for illustration in the preceding two
sections consists of a sample of N � 13317 garnets col-
lected from around the world [Gri�n et al. (1997)]. A
garnet is a complex Ca-Mg-Fe-Cr silicate that commonly
occurs as a minor phase in rocks making up the Earth's
mantle. The input variables are the concentrations of var-
ious chemicals measured on each garnet.

x� fTiO2;Cr2O3;FeO;MnO;MgO;CaO;Zn;Ga;Sr;Y;Zrg:
One data analytic objective was to contrast the chemical
compositions of garnets with di�erent plate-tectonic set-
tings. Three such plate-settings are represented in the
data: (1) ancient stable shields, (2) Proterozoic shield ar-
eas, and (3) young orogenic belts. The output variable
chosen for illustration was an indicator of being from the
®rst setting

y � 1�plate-tectonic setting � ancient stable shields�:

The global output mean is �y � 0:59; 59% of the garnets in
the sample had this setting.

The ®rst box induced by the PRIM procedure using the
choices described in the previous sections is

x 2 B1 � Cr2O3 � 0:62 & MgO � 0:67: �11:1�
Here the limits are stated in terms of the quantiles of the
corresponding individual concentrations over the sample.
Thus this box covers garnet samples for which the con-
centration of Cr2O3 is among its 38% highest values and
that for MgO assumes values in its top 33% . The output
mean in this box is �y � 0:94 with support b1 � 0:11. That
is, this box covers 11% of the data and 94% of the garnets
within it were ancient stable shields. The next two boxes
induced through the covering procedure outlined in Section
6 are

x 2 B2 � Ga � 0:86 & 0:09 � Y � 0:92;

x 2 B3 � Cr2O3 � 0:43 & MgO � 0:69 & CaO � 0:47

�11:2�
with respective output means �y2 � 0:80 and �y3 � 0:83. The
respective supports are b2 � 0:10 and b3 � 0:09. The ®rst
three boxes R � B1

S
B2

S
B3 collectively cover 29% of the

data �bR � 0:29� with target mean �yR � 0:86. In the entire
sample the relative odds of a garnet having the ancient
stable shields setting is 1.44 whereas in the induced region R
the corresponding odds are 6.14. Thus, the odds ratio has
been increased by over a factor of four. The three rules
(11.1) (11.2) provide a parsimonious and easily interpreted
description of the induced region.

In the geology data base there are 493 garnets with the
third plate-tectonic setting, comprising only 3.7% of the
entire sample. Thus, the output

y � 1�plate-tectonic setting � young orogenic belts�
�11:3�

can be viewed as a ``rare event'' phenomenon, �y3 � 0:037.
Applying the PRIM procedure to (11.3) produced the
(®rst) box

x 2 B1 �
Cr2O3 � 0:16 & MgO � 0:42 &
CaO � 0:29 & Ga � 0:59 &
0:73 � Y � 0:96

(
�11:4�

Its mean value is �y1 � 0:82 with support b1 � 0:017. Thus,
almost 40% of the young orogenic belts garnets are con-
tained in this very small box comprising only 1.7% of the
entire sample. The relative odds of ®nding this type of
garnet in the box are increased by over a factor of 100 from
that of the entire data base. The next two induced boxes
(not shown) have mean and support values
��y2 � 0:12; b2 � 0:04� and ��y3 � 0:19; b3 � 0:025� with
corresponding odds ratio increases of 3.55 and 6.11 re-
spectively. These results suggest that a substantial fraction
of the young orogenic belts garnets have chemical com-
positions very distinct from those of the other two settings.

Table 1. Sequential variable relevance for the geology data

Var. �y b

0 0.946 0.072
1 0.952 0.081
6 0.941 0.108

2 0.755 0.340
5 0.583 1.0
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The induced rules (e.g. (11.4)) provide insight as to the
nature of these distinctions.

12. Missing values

In the geology data base there were no missing values; all
concentration measurements were present for each garnet.
However in other contexts such as marketing data, sample
survey questionnaires, and even in some scienti®c data sets,
missing values are a problem. In such settings a strategy is
needed to enable the procedure to e�ectively process the
available data and not be distracted by values that are not
present. Such a strategy should accomplish two goals.
First, if there is an association between the output variable
and the probabilities of missing values on various inputs,
this should be used to advantage. Second, even in the ab-
sence of such associations, one would like the procedure to
e�ectively use values of input variables highly correlated
with relevant ones as surrogates when the values of the
corresponding relevant variables are missing.
In the context of patient rule induction both goals can be

met with a surprisingly simple strategy; the value xj =
missing is simply taken as another (legitimate) value that it
can assume. For categorical variables this represents no
change to the peeling/pasting algorithms (Section 7). For
each real valued variable xj the number of peeling subboxes
b (7.5) that it contributes to the eligible class C�b� (7.2) is
extended to three

bjÿ � fx j xj < xj�a�g
bj� � fx j xj > xj�1ÿa�g
bj0 � fx j xj � missingg:

�12:1�

The observations in the current box B for which xj �
missing are of course not used to compute xj�a� and xj�1ÿa�.

This strategy directly meets the ®rst goal. Associations
between the output and missing input values are clearly
incorporated. It also indirectly meets the second goal. The
mean y-value for those observations missing a particular
input value (xj = missing), through a mechanism unrelated
to the value of the output, is likely to be close to the global
target mean �y. As such, the missing value is unlikely to be
chosen for peeling, especially in the early stages of the top-
down sequence. If xj is a highly relevant input variable,
other inputs strongly correlated with it appear relevant by
virtue of that correlation. Since the original highly relevant
variable is unlikely to choose its missing value for peeling,
those variables correlated with it that contain values when
those of the original one are missing have increased like-
lihood of being chosen for peeling.

This missing value strategy has the (perhaps) unpleasant
side e�ect of clouding interpretation. When (fundamen-
tally) irrelevant input variables are chosen for peeling be-
cause of their strong correlations with relevant ones they

are important to the ®nal box de®nition only because of the
missing values on the relevant ones. They serve only as
surrogates and have no direct impact on the output vari-
able. In the absence of missing values they would have been
much less likely to be chosen for peeling and, if chosen,
much more likely to be removed through the redundant
variable strategy outlined in Section 10.

13. Multiple trajectories

A peeling trajectory (9.1) (Fig. 1) is induced by an appli-
cation of the peeling algorithm. It allows the user the op-
portunity to choose the box mean-support trade-o�
according to judgement and programmatic needs. The
particular trajectory induced depends upon the data and
the details of the algorithm. These details involve values of
meta-parameters that control various aspects of the pro-
cedure. One such is the peeling parameter a (7.5). Others
are discussed in Section 14. Although the procedure is
fairly stable, di�erent parameter values can induce (at least
slightly) di�erent trajectories and the (``model selection'')
issue arises of which one is best from the perspective of the
user's needs. As with other aspects of the procedure such
judgements are best made by the user.

The model selection strategy adopted here is to simul-
taneously present a large number of trajectories on a single
plot, each based on its particular set of meta-parameter
values. Each trajectory produces a set of points like those
of Fig. 1 representing the mean-support trade-o�s for its
nested sequence of boxes. The union of all such trajectories
produces a scatter plot where each point represents a box
from one of the individual trajectories. As with a single
trajectory (Fig. 1) the user chooses the box represented by
the point on the scatter plot corresponding to the preferred
mean-support trade-o�. The issue of redundant input
variables for that box can then be addressed in the manner
described in Section 10 (e.g. Table 1). In practice several
such boxes are identi®ed representing potentially promising
mean-support trade-o�s. Each one is then followed by
bottom-up pasting and then redundant variable elimina-
tion. The overall best solution, as judged by the user, is
then adopted to produce the preferred box at this stage of
the covering sequence (Section 6).

Additional trajectories can also be induced by ``bump-
ing'' (Tibshirani and Knight, 1995). Here one repeatedly
modi®es the data supplied to the algorithm rather than
modifying the algorithm itself. The purpose is to mitigate
instability by producing a large number of randomly gen-
erated solutions, each one induced by randomly perturbing
the learning data, usually through ``bootstrapping'' (Efron
and Tibshirani, 1995). The hope is that one of these ran-
dom solutions may (accidentally) turn out to be better (on
the left-out test data set) than the one induced on the
original learning data. Although intended for greedy pro-
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cedures such as decision trees that are inherently very un-
stable (Breiman, 1996), bumping may also sometimes help
with peeling in anomalous situations where there is a high
degree of inherent ambiguity among the initial set of peels.
In such cases bumping will tend to produce a variety of
di�erent initial peeling sequences one or more of which
may lead to a better ®nal set of boxes than the sequence
derived from the original learning data set.

Whether induced by modifying parameter values or
bumping, a large number of trajectories presented on a
single plot can produce a confusing picture. The large
number of points can obscure details making it di�cult to
choose a good mean-support trade-o�. The plot can be
greatly simpli®ed by ``thinning''; the vast majority of points
that represent unlikely choices are removed. Any point i
that represents a box with smaller mean and smaller sup-
port than that of another box j

�yi < �yj & bi < bj �13:1�
is not likely to be selected; one would favor the box rep-
resented by point j. Therefore all points that are dominated
(13.1) by another point on the plot can be removed leaving
only the upper envelope of undominated points. This pre-
sents a less confusing picture making it easier for the user
to make an appropriate choice.

Figure 2 shows the single trajectory produced by peeling
using criterion (7.2) on the marketing data base described
in Section 15 (y � number of round trip ¯ights/year). Fig-
ure 3 shows a corresponding plot resulting from 20 tra-
jectories induced by 10 bumps on each of two di�erent
peeling criteria (Section 14). Both plots have been thinned
(13.1). Here, for b J 0:05 the two sets of points track each
other fairly closely, with Fig. 3 o�ering a richer set of al-
ternatives from which to choose. For b K 0:05 the multiple
trajectory plot provides a series of boxes with much higher
estimated output mean values. This represents a clear ad-
vantage if boxes of small support �b K 0:05� are useful in
this application. Usually the gains produced by employing
multiple trajectories are generally more modest than that
observed here. Patient peeling tends to be fairly stable.
However, for moderately sized data sets �N K 20 000�
where computation is not a burden, multiple trajectories
can provide insurance against a poor choice of meta-pa-
rameter values or, through bumping, against an unfortu-
nate set of (ambiguous) peels.

14. Peeling criteria

The guiding principle of the peeling strategy (Section 7.1) is
patience (Section 8). For real valued input variables with
many di�erent values, the degree of patience is e�ectively
controlled by the meta-parameter a (7.5). For real valued
inputs with fewer distinct values (many ties), subboxes b
eligible for peeling are taken to have support bb as close as

possible to the value of a. Tied values are always peeled
together. For categorical variables the support bb of eligi-
ble subboxes (7.6) cannot be directly controlled. In these
latter two cases it is still desirable to encourage patience to
the extent possible.

14.1. Subbox criteria

The procedure discussed in Section 7.1 uses the target mean
�yBÿb in the next smaller box Bÿ b (7.2) as the peeling cri-
terion to be maximized with respect to the subbox b. This is
equivalent to maximizing the improvement

I�b� � �yBÿb ÿ �yB �14:1�
of that over the current box B. When there are several
competing subboxes with similar values of I�b�, the one
with the smallest support bb is most desirable since it in-
duces the most patience; more data remains for further
peeling. Therefore, improvement per unit of removed
support bb becomes an issue.

Patience can be encouraged by using a modi®ed peeling
criterion

J�b� � I�b� � P �bb� �14:2�

Fig. 2. Single peeling trajectory on marketing data after thinning,
to be contrasted with the corresponding multiple trajectory plot in
the next ®gure

Fig. 3. Multiple trajectory plot on marketing data after thinning.
Compared to the single trajectory plot, it o�ers more mean-support
choices and better boxes at smaller support values
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where P �bb� is a monotone decreasing function of its ar-
gument. Using

P�bb� � 1=bb �14:3�
produces a criterion (14.2) that measures improvement
(14.1) per amount of removed support bb. Expressing
(14.1) as

I�b� � bb

bB ÿ bb
�yB ÿ �yb� �; �14:4�

where �yb is the output mean in the peeled subbox b, yields
the criterion

J�b� � 1

bB ÿ bb
�yB ÿ �yb� � � �yBÿb ÿ �yb: �14:5�

Thus, using (14.3) in (14.2) produces as a criterion the
di�erence between the output mean of the data remaining
and that of the peeled subbox. Even more patience can be
induced by choosing

P �bb� � �bB ÿ bb�=bb �14:6�
which produces the mean in the peeled subbox �yb as an
(equivalent) criterion to be minimized.

Each of the alternatives (14.1) (14.3) (14.6) can produce
(at least somewhat) di�erent peeling trajectories. All of
them can be induced together as part of the multiple tra-
jectory strategy described in Section 13. In this way the
best one for the application at hand can be chosen by the
user.

14.2. Input variable criteria

All of the peeling criteria discussed so far (14.1) (14.3)
(14.6) still have a greedy component: the subbox b� that
optimizes them is chosen to produce the next box Bÿ b�.
Removing a di�erent subbox at a particular step may in
fact produce better boxes later in the peeling sequence.
The goal of a patient strategy is to mitigate this e�ect by
providing a large number of peels in the hope that later
steps can compensate for poor (greedy) choices. Bumping
can also help in this regard. These can be viewed as
``passive'' strategies. Occasionally, in unusual situations,
the use of more ``proactive'' strategies to overcome greed
can produce better trajectories. These can be included
among the multiple trajectories from which the user can
choose.

The above criteria all focus on subboxes b. The input
variables fxign

1 serve only to de®ne those eligible for dele-
tion (7.5) (7.6). A more proactive strategy could focus on
the input variables themselves, attempting to ascertain
which ones at each step are most likely to be in¯uencing the
target function f �x� within the subregion de®ned by the
current box, x 2 B. One such criterion that requires no
additional computation is

Jj � max
m

J�bjm�
� 	ÿmin

m
J�bjm�
� 	 �14:7�

where J�b� is the original criterion (14.2) and fbjmg are
the subboxes contributed by jth input variable to the
eligible set. The subbox chosen for peeling bj�m� is the one
de®ned on the optimal input variable j� � argmaxj Jj

that maximizes the original criterion m� �
argmaxm J�bj�m�.

In this context (14.7) it can be useful to de®ne an addi-
tional (``central'') subbox associated with real valued inputs
xj

bjc � fx j xj�a� � xj � xj�1ÿa�g: �14:8�
Including bjc along with fbjÿ; bj�g (7.5) in (14.7) makes the
procedure sensitive to input variables xj upon which the
target function (within the current box) has a strong sym-
metric convex dependence, for example f �x� � x2j ;
ÿ1 � xj � 1. In this case deleting either extreme subbox
b � bj� (7.5) decreases the mean in the remaining box
�yBÿb < �yB. For this reason, not including bjc (14.8) in (14.7)
will likely cause this xj to be ignored for peeling, perhaps in
favor of an irrelevant input that has no e�ect on the output
y �yBÿb ' �yB� �. Note that bjc is only used in (14.7) to help
evaluate the importance of each real valued input variable;
it is never eligible for actual deletion.

15. Marketing data

In this section the use of PRIM is illustrated on marketing
data. It consists of N � 9409 questionnaires (502 questions)
®lled out by shopping mall customers in the San Francisco
Bay area [Impact Resources, Inc. Columbus, OH (1987)].
The ®rst 14 questions, relating to demographics, are listed
in Table 2. These are seen to be a mixture of real and
categorically valued variables. There are many missing
values. The other 488 questions are concerned with various
consumer behaviors. These can be used as output variables
y to identify the demographics (input variables x) of those
respondents who engage in particular behaviors. Here we
chose for illustration three characteristic behaviors of one
of the authors (JHF).

The ®rst behavior examined is frequency of air travel as
characterized by number of round trip ¯ights per year. The
global mean value over the entire data base is �y � 1:7. The
®rst two boxes induced by PRIM are

y � number of flights/year; �y � 1:7
B1 : �y1 � 4:2; b1 � 0:08

education � 16 years

occupation 2 fprofessional/managerial,

sales worker, homemakerg
income > $50K; & 6� missing

number of children �< 18� in home � 1
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B2 : �y2 � 3:2; b2 � 0:07; Dissimilarity: D�B1;B2� � 0:14:
education > 12 years; & 6� missing

income > $30K; & 6� missing

18 < age < 54

married/dual incomes 2 fsingle, married-one

incomeg
The box ``dissimilarity'' diagnostic D�B1;B2� (16.5) is de-
scribed in Section 16.3. The ®rst box identi®es the demo-
graphics of a 8% market segment that averages 4.2 ¯ights
per year, and the second box another 7% segment, distinct
from the ®rst, with almost double the global average of 1.7.
These boxes verify intuition; there are no real surprises
revealed by these rules.

The next behavior examined is that of owning a pet.
Fifty two percent of the respondents indicated that they
had a pet; the odds of a randomly selected person in the
sample owning a pet are roughly 1/1. The ®rst two boxes
induced by PRIM are

y �1�have a pet�: �y � 0:52:

B1 :�y1 � 0:80; b1 � 0:17
age � 44
education � 14years
live in Bay Area � 4 years

home 2 fhouse, mobileg
ethnic class 2 fNative American, East

Indian, White, missingg
B2 :�y2 � 0:76; b2 � 0:08;Dissimilarity: D�B1;B2� � 0:44:

number of children �< 18� in home > 0

household status 2 fown, live with parents,
missingg

ethnic class 2 fNative American,

East Indian, White, missingg
PRIM identi®ed two market segments collectively covering
25% of the entire sample for which the odds of owning a

pet are roughly 5/1. Perhaps a surprise here is the impor-
tance of ethnic class in determining likelihood of pet
ownership.

The third example relates to radio listening habits, spe-
ci®cally inclination to listen to KGO-AM

y � listen to KGO-AM �
0:0 never
0:25 occasionally
1:0 regularly.

8<:
The global average is �y � 0:10. The ®rst two rules induced
by PRIM are

B1 : �y1 � 0:23; b1 � 0:14
age � 35

live in Bay Area � 10 years; & 6� missing

number of children in home � 1

householder status 6� rent

ethnic class 2 fBlack, Pacific Islanderg
type of home 2 fhouse, condog

B2 : �y2 � 0:20; b2 � 0:09; Dissimilarity:D�B1;B2� � 0:77:

sex = male

marital status 2 fmarried, divorced or separated,

missingg
occupation 2 fprofessional/managerial, sales

worker, retiredg
These ®rst two boxes cover a 23% market segment and
identify demographics for which KGO-AM has over twice
the listener share than in the entire sample.

16. Diagnostics

The basic output of the PRIM procedure is a set of rules
(5.5) de®ning a series of boxes (5.1). They can be used to
infer simultaneous values of particular input variables that
relate to large values of the output variable. These rules
also de®ne respective subsets of the data, namely those
observations that lie within each box Bk

fyi; xi j xi 2 Bkg: �16:1�
Summary statistics based on these observations (16.1) can
be used to provide further insight as to the nature of the
induced region (5.1).

16.1. Sensitivity analysis

An important ingredient of any data analysis is deter-
mining the sensitivity of the objective to the induced pa-
rameter values. Here the objective is (high) box mean (7.1)
and the parameters are the box boundaries (5.5). This
sensitivity can be inferred from the rate of change of
the target mean at the boundary values on each input
variable de®ning the solution for each box. Let B be a
solution box and Bÿj the corresponding (larger) box with

Table 2. Input variables for the marketing data

Var. Demographic No. of values Cat.

1 sex 2 *
2 marital status 5 *

3 age 6
4 education 6
5 occupation 9 *

6 income 9
7 years in Bay Area 5
8 married ± dual incomes 2 *
9 number in household 9

10 number in household<18 9
11 householder status 3 *
12 type of home 5 *

13 ethnic classi®cation 8 *
14 language in home 3 *
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the jth input variable xj removed from its de®nition (10.1).
The function

�fj�xj� � E�y j xj & x 2 Bÿj� �16:2�
represents the target mean for each value of xj, given the
solution boundary values on the other variables fxj0 gj0 6�j
de®ning the box (5.5). The slope of this function d �fj=dxj at
the xj box boundaries provides a measure of the sensitivity
of the box mean to those particular boundary values. For
real-valued variables an estimate f̂j�xj� of (16.2) can be
obtained by smoothing the output variable y on xj for those
observations contained in the enlarged box Bÿj

f̂j�xj� � smooth�yij vs. xij j xi 2 Bÿj�: �16:3�

For categorical variables, (16.3) is simply the output mean
for each of its values, xj 2 Sj, in Bÿj.
Figure 4 shows plots of (16.3) for the four variables de-

®ning the ®rst box B1 of the frequent ¯yer example
�y � number of flights per year� of Section 15. (The
input variable values here are di�erent than those indicated
in Section 15 since each value in the data set represents a
code for the corresponding actual value.) For the categor-
ical variable �xj � occupation -- upper right frame� the
values of (16.3) are represented by vertical bars. Associated
with each bar are two quantities shown below it. The ®rst is
the value of xj with ``M'' indicating missing value. The
second is the fraction (nearest percent) of the observations
in the corresponding box Bÿj having that particular value
of xj. The horizontal line along the top of the plot is the
output mean in the solution box B, provided for reference.
The shading (or not) of each bar indicates whether (or not)
its corresponding value is in the set sjk (5.5) de®ning the box
B. Here the values occup 2 f1; 2; 5g de®ne the box on this
variable. The sensitivity of the solution box B to each cat-
egorical value is re¯ected by the height of its bar relative to
the horizontal line, and its relative support (percent). Here
one sees that enlarging the box B by including additional
values would reduce its mean. The box mean is least sen-
sitive to inclusion of values xj 2 f6; 7;Mg which have val-
ues of (16.3) closest to the box mean. However, these values
comprise only a small fraction of the data so box support is
not signi®cantly increased. Of these values de®ning the box,
the exclusion of xj � 5 would increase the box mean with a
moderate reduction in its support. Excluding either of the
other two values xj 2 f1; 2g would substantially reduce the
solution mean and support.

The other three frames of Fig. 4 represent the orderable
(real) valued variables de®ning the solution box. The line
represents the smooth (16.3) for each, with the points
representing the (here) discrete values of each corre-
sponding variable. The box boundaries on each respective
variable are indicated by the vertical lines. The horizontal
line between the boundaries on each plot is the solution
box B mean. Here each variable happens to de®ne only one

boundary with the other one being implicitly de®ned by the
corresponding upper or lower limit of the plot. The ``M'' at
the right of each plot represents (16.3) for missing values
and the number below it shows the fraction of xj � missing
(to the nearest 10%) for observations in the enlarged box
Bÿj. The small vertical ``hash'' marks along the bottom of
each plot delineate the deciles of the distribution of xj for
observations in Bÿj. From Fig. 4 one sees that the output
mean in the solution box B is least sensitive to small
changes in the income boundary and correspondingly
much more sensitive with respect to the other two order-
able variables (education and number of children in the
household with age <18). Note that for the latter variable,
approximately 70% of its values in Bÿj are missing (``7''
in lower right corner). These mostly represent the value
zero which was coded as missing for this variable in the
data set.

As indicated by this example, sensitivity analysis like
that provided in Fig. 4 can aid the user in interpreting the
solution produced by PRIM, and perhaps also in making
modi®cations to it. With an interactive implementation the
user could optionally modify the box boundaries based on
information provided by the sensitivity plots. Corre-
sponding sensitivity plots can then be produced for the
modi®ed box, perhaps suggesting further changes. This
can be iterated until the user is satis®ed with the box
boundaries on all variables. Such an implementation
essentially permits the user to manually execute the peeling/
pasting strategy, starting with the PRIM solution. As
with other aspects of the PRIM procedure, this permits
the full incorporation of user judgement and domain
knowledge.

16.2. Relative frequency plots

The rules (5.5) provide a de®nition of each box Bk. How-
ever, care is required in interpreting each of these de®ni-
tions as a complete or unique description of Bk. Other
descriptions, based on di�erent input variables, may lead
to very similar boxes in terms of the actual data points
(16.1) that are covered. This is caused by collinearity
among the input variables. As discussed in Section 10 high
correlation between two (or more) input variables within a
box can produce ambiguity in its de®nition; appropriately
restricting the range of values of either variable (or both)
gives rise to similar subsets of observations. One of the
goals of the redundant variable elimination strategy is to
select the best (most highly restrictive) variable within each
such highly correlated group of inputs.

From the perspective of interpretation it is important to
be aware of possible alternative de®nitions for each in-
duced box Bk. The rule (5.5) de®nes the data (16.1) within
the box. This data can be used to compare the relative
frequency distribution of values of each input variable xj

within the box pj�xj j x 2 Bk� to that over the entire data
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sample pj�xj�. Input variables (other than those used to
de®ne the box) for which the former distribution is more
highly peaked than the latter, represent candidates for al-
ternative de®nitions. Like the input variables that explicitly
de®ne Bk (5.5) the range of values of these other variables is
also restricted within the box.

There are variety of ways to compare two distributions.
One possibility is through their ratio

rjk�xj� � pj�xj j x 2 Bk�=pj�xj�: �16:4�
Note that the support of the denominator is always greater
than that of the numerator. A uniform distribution for
rjk�xj� implies that xj is totally irrelevant to the de®nition of
Bk; the relative frequency of its values is the same inside or
outside of the box. Departures from uniformity indicate
association with the box de®nition. A highly peaked dis-
tribution for rjk�xj� implies that the input xj is highly rel-
evant to the de®nition of Bk whether or not it is one of the
de®ning variables (5.5).

Figure 5 shows relative frequency ratio plots frj1�xj�g141
(16.4) for the ®rst box B1 of the frequent ¯yer example
�y � number of flights per year� of Section 15. The last
bin of each plot represents the value xj = missing. The
other bins show the respective rj1�xj� for the non-missing
values. The ®rst frame r11�x1� shows that gender is not

highly relevant to the de®nition of B1; men �x1 � 1� are
slightly over-represented among these frequent ¯iers. The
second plot shows that widowed people �x2 � 4� are much
less likely to be among these frequent ¯yers that in the total
sample. The plot for x3 (age) indicates that young [x3 � 2
(24 years old)] and older [x3 � 7 (55 years old)] people are
highly under-represented in B1. The distributions of x4, x5,
and x6 (education, occupation, and income) re¯ect the box
de®nition (Section 15). The plot of r51�x5� shows that
x5 � 1 (occupation = professional/managerial) are almost
three times more likely to be among the frequent ¯yers of
B1 than in the total sample. The distribution of r91�x9�
(number in household) re¯ects the box de®nition on
number of children in the house less than 18 years old. The
plot of r12;1�x11� (householder status) re¯ects that of r31�x3�
(age). Those people who live with parents or family
�x11 � 3� tend to be younger (x3 � 24 years old). The dis-
tribution of r12;1�x12� (type of home) indicates an over-
representation of condominium owners �x12 � 2� and a
dramatic under-representation of mobile home owners
�x12 � 4� in B1. The ethnic classi®cation plot r13;1�x13�
shows an over representation of East Indians �x13 � 4� and
whites �x13 � 7�, and an under-representation of African
Americans �x13 � 3� and especially Hispanics �x13 � 5�.
This is also re¯ected in r14;1�x14�; people who speak Spanish

Fig. 4. Sensitivity plots for the ®rst box of the frequent ¯yer example. These can be used to judge the sensitivity of the box mean to the values
of the induced boundaries, as well as suggest potential modi®cations to the boundaries
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at home �x14 � 2� are less likely to be among the frequent
¯yers in B1.

The last frame of Fig. 5 shows the distribution corre-
sponding to (16.4) for the output variable, ry1�y�. One sees
that all values of y are represented in B1. People who ¯y
nine or more times per year �y � 9� are roughly four times
more likely to be in B1 than in the general population,
whereas those odds are reversed for those who don't ¯y at
all �y � 0�.

The highly non-uniform distributions of rj1�xj� (16.4) for
many of the inputs not directly de®ning B1 indicate the
presence of strong associations among many of the inputs
within the box. The choice here of x4, x5, x6, and x10 to
explicitly de®ne B1 is based on the data; they appear to be
the most highly relevant as estimated by the redundant
variable elimination strategy of Section 10. As with any
estimation procedure, variance can cause errant choices
among close alternatives. Also it is possible (if unlikely)
that a highly relevant input variable can be completely
masked by others highly correlated with it, and never be
chosen for peeling. Although the patient strategy (Section
8) as well as multiple trajectories (Section 13) help mitigate
this possibility, it cannot be completely eliminated. Ex-
amining the distributions of frjk�xj�gn

1 (16.4) can help di-
agnose such problems as well as giving an overall
impression of the characteristics of the induced box. Of
course, if two or more highly correlated variables appear

from the data to be nearly equally relevant, only user
judgement can ascertain which one (or both) actually are
related to the output y.

For the marketing data (Table 2) there are at most nine
di�erent non-missing values for any input variable. With a
sample size of N � 9409 the value of rjk�xj� (16.4) can be
reliably estimated for each individual value of xj. In many
data sets real-valued variables can assume a large number
of distinct values. The geology data discussed in Section 11
is an example. For such real-valued inputs xj, plots of
(16.4) analogous to Fig. 5 are made by histogramming the
xj-values using as bin boundaries the c-quantiles of the
distribution of xj over the entire data set pj�xj�. The num-
ber of bins �1=c� is chosen by the user based on sample size
N and the degree of detail required.

Finally, it is important to remember that the plots in
Fig. 5 do not represent the frequency distribution of the xj-
values pj�xj j x 2 Bk� within the box Bk. Rather, they rep-
resent those frequencies relative to the corresponding fre-
quencies pj�xj� over the entire data set (16.4). For example,
the value y � 9 is not the most frequent output value in B1

(last frame). This value is very infrequent in the entire data
set. The value py1�9� � 4:2 indicates that the output value
y � 9 is 4.2 times more likely to appear in B1 than in the
data set as a whole. Plots of pj�xj j x 2 Bk� can also serve as
useful additional diagnostics as can statistics other than
(16.4) for comparing it to pj�xj�.

Fig. 5. Relative frequency ratio distributions for the ®rst box of the frequent ¯yer example. Shown are histograms of the frequency of values
for each variable for observations in the box, relative to those in the entire data set. These can be used to assess the location of the box with
respect to the values of all input variables, including those that do not appear explicitly in the box de®nition
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16.3. Interbox dissimilarity

The covering procedure (Section 6) produces a sequence of
boxes fBkgK

1 that cover a subregion R (5.1) of the input
variable space. No constraints are placed on the relation-
ships among the boxes. They can overlap or be disjoint, be
close or far apart, as dictated by the nature of the target
function. For example, if the target function is character-
ized by a single prominent mode, the covering procedure
might produce a series of nested boxes, each successively
induced box completely covering all of these induced be-
fore it. Alternatively, successive boxes might cover di�erent
``shoulders'' of that mode producing a ``cluster'' of closely
related boxes. If there were several di�erent prominent
modes, the boxes might divide into corresponding groups
of nested/clustered sequences. Knowledge concerning re-
lationships among the boxes can provide information
about the modal structure of the target function.

Relationships among the boxes can be deduced from
their pairwise dissimilarities. The ``dissimilarity'' D�Bk;Bl�
between boxes Bk and Bl is de®ned as the di�erence be-
tween the support of the smallest box Bkl that covers both
of them, and the support of their union

D�Bk;Bl� � b�Bkl� ÿ b�Bk [ Bl�: �16:5�
Here the support b�B�, of a box B, is de®ned as the fraction
of observations in the entire data set (1.1) that it covers.
The minimal covering box is de®ned as

x 2 Bkl �
\n
j�1
�xj 2 sj�k; l�� �16:6�

where the value subsets sj�k; l� 2 Sj are derived from those
of the respective two boxes fsjkgn

j�1 and fsjlgn
j�1 (5.3). For

real valued variables xj, sj�k; l� is the smallest interval�
tÿj �k; l�; t�j �k; l�

�
that covers the respective two intervals

for Bk and Bl on xj (5.4)

tÿj �k; l� � min
ÿ
tÿjk; t

ÿ
jl

�
; t�j �k; l� � max

ÿ
t�jk; t

�
jl

�
: �16:7�

For categorical variables xj, the subset sj�k; l� is the union
of the respective Bk and Bl subsets

sj�k; l� � sjk [ sjl: �16:8�
The dissimilarity measure (16.5) assumes values in the
semi-open interval 0 � D�Bk;Bl� < 1. Although D�Bk;Bl� is
not strictly a distance, it retains the essential property that
its value increases as the value subsets fsjkgn

j�1, fsjlgn
j�1

(real or categorical), de®ning the two boxes Bk, Bl, in-
creasingly di�er on each of the input variables xj. Nested
boxes will have zero dissimilarity, as will ``adjacent'' boxes
that have contiguous intervals on one real variable xj, and
identical subsets on all other variables fsj0k � sj0lgj0 6�j.
Other con®gurations will produce larger dissimilarity with
the highest values occurring when the two boxes are de-
®ned by highly disparate value subsets (5.5) on one, or

especially several, input variables. Note that two boxes can
have non-zero intersection b Bk

T
Bl� � 6� 0� � and still be

highly dissimilar, so long as they are de®ned by very dif-
ferent subsets on the non-interesection variables. Also note
that box dissimilarity is de®ned in terms of the data dis-
tribution. Two boxes can be de®ned in terms of very dif-
ferent sets of input variables and still be quite similar, if the
two sets are highly correlated.

Dissimilarities (16.5) are shown between the two boxes
induced for each marketing data example in Section 15.
For the ®rst (frequent ¯yer) the two boxes are fairly similar
�D�B1;B2� � 0:14� indicating that both boxes represent
similar market segments. For the second example (have a
pet) the two induced boxes are moderately dissimilar
�D�B1;B2� � 0:44�, representing somewhat di�erent market
segments. The two boxes in the third example (KGO-AM)
are very di�erent �D�B1;B2� � 0:77�. They represent very
di�erent demographic groups who are inclined to listen to
KGO-AM radio.

17. Scaling to very large databases

The PRIM procedure is memory based. All of the data
(1.1) is presumed to be stored in random access memory
(RAM). While the RAM capacity of present day comput-
ers is su�cient for many applications, and is steadily
growing, there are some data mining applications for which
all of the relevant data can reside only on secondary (disk)
storage. Although one could envision a disk-based imple-
mentation of PRIM, there are simple strategies to enable it
to pro®tably use all of this data in a RAM based context.

The strategy employed depends on the (approximate)
support b0 (7.4) required for the induced boxes. If this is
not very small �b0 J 0:01� then a modi®cation of the
bumping strategy (Section 13) can be employed. Successive
trajectories (9.1) are induced on independent randomly
selected subsets of the entire data base. The size of each
subset is determined by available RAM. The multiple tra-
jectory strategy discussed in Section 13 is then employed to
select the best box among all of those produced by the
independently induced trajectories. This approach has a
natural parallel implementation.

If very small supports �b0 K 0:01� are desired, then a
sequential sampling strategy can be used. As above, ran-
dom subsamples are drawn from the data base. However,
each successive subsample is required to be inside the box
induced from the previous subsample. PRIM is applied to
each successive sample with b0 chosen to be relatively large
�b0 J 0:01�. Applying this procedure m times produces
boxes with support bm

0 . For large enough data bases this
sequential strategy can be coupled with the parallel one
discussed above. These RAM based approaches presume a
data base implementation that supports rapid selection of
random subsets.
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18. Competitors

Rule induction has a long history in the machine learn-
ing and statistics literature. Although not speci®cally
aimed at function optimization, many existing procedures
can be applied in that context, at least in special cases.
In this section we qualitatively compare PRIM to some
of the more popular rule induction methods. A quanti-
tative comparison with one (CART) is provided in Sec-
tion 19.

18.1. Covering algorithms

When the output variable y assumes only two values (e.g.
y 2 f0; 1g�, PRIM can be viewed as an inductive learning
method where the two values respectively represent nega-
tive and positive instances of a target concept to be learned.
In this context PRIM shares many of the characteristics of
other machine learning algorithms that learn disjunctive
sets of propositional rules through sequential covering.
These include CN2 (Clark and Niblett, 1989) and propo-
sitional versions of FOIL (Quinlan, 1990) such as RIPPER
(Cohen, 1995). The principal di�erence is the search
strategy used for examining the space of possible precon-
ditions to construct each rule (box). These other proce-
dures all use very greedy strategies, especially with
categorical variables. As discussed in Section 8.1 this can
limit performance in many situations and is the primary
motivation for the development of the patient strategy
employed by PRIM. A less important di�erence is in the
representation of the induced rules. Each box induced by
PRIM (5.5) can involve implicit disjunctions.

xj 2 sjk �
[

zl2sjk

�xj � zl�:

Most other methods produce purely conjunctive rules in-
volving only equality constraints on the values of each
categorical variable. Other di�erences include the strategy
for missing values (Section 12) and the use of multiple
trajectories (Section 13) instead of explicit backtracking.

18.2. Decision tree induction

In terms of actual application, procedures most competi-
tive with PRIM are likely to be decision tree induction
techniques such as CART [Breiman et al. (1984)] and C4.5
(Quinlan, 1994). These methods produce a set of disjoint
rules that collectively cover the entire input space through
recursive partitioning. Each successive partition (``split'') is
induced by a condition xj 2 sjk so that each rule in the ®nal
covering set (terminal nodes) takes the conjunctive form
given in (5.5). Although the goal of these procedures is
accuracy of approximation everywhere in the input space,
rather than explicit optimization, one can examine the rules
associated with the highest predicted output values. These

can be interpreted in an analogous manner to those in-
duced by PRIM.

The major di�erences between PRIM and decision tree
induction methods are the use of covering rather than
partitioning to produce rule sets, and patient rather than
greedy strategies to induce the individual rules. The latter
issue is discussed in Section 8. The relative merits of cov-
ering versus partitioning are issues of debate in the machine
learning literature (see Mitchell, 1997). Rules produced by
covering are more ``expressive'' than those produced by
partitioning since they are induced independently of each
other. Partitioning rules are forced to share many common
conjunctive statements xj 2 sjk . Thus, covering tends to
produce fewer rules, each of a simpler nature (fewer con-
juctions) and are more interpretable. This has motivated
post-processing strategies such as C4.5 rules (Quinlan,
1994, 1995) that attempt to simplify decision tree rule sets.
For greedy strategies it is not clear whether the increased
expressiveness of covering rules translates to higher accu-
racy; this is likely to be problem dependent. In the case of
patient rule induction, covering seems to be the more
natural alternative; a straightforward patient implementa-
tion based on partitioning does not appear to be obvious.

18.3. User involvement

A major di�erence between PRIM and its predecessors is
the involvement of user judgement as an integral part of
the rule induction process (Sections 9, 10, 13 and 16.1). The
purpose of the exercise is presumed to be descriptive data
analysis where speci®c goals are highly problem dependent.
The PRIM procedure provides natural interfaces for user
guidance towards individual goals, as well as for incorpo-
rating domain knowledge to improve accuracy. The user is
given the opportunity to customize individual rules to
produce the smallest simplest set consistent with pro-
grammatic needs. This is in contrast with other rule in-
duction methods where all such trade-o�s are
automatically made by thresholding mathematical criteria.
In these (automatic) settings the user assumes a passive role
of simply inspecting the produced output.

19. PRIM versus CART

Among the competitors to PRIM the one using the least
greedy strategy is CART [Breiman et al. (1984)]. On av-
erage, each conjuctive constraint xj 2 sjk de®ning the ®nal
rule set (5.5) (terminal nodes) selects one half of the data
(binary split) at each iterative step, for both real and cat-
egorical variables. This can be viewed as a ``semi''-greedy
strategy when compared to most other methods that
fragment the data much more severely. Also, CART pro-
duces rules that are identical in form (5.5) to those of
PRIM, and it is indirectly equipped to handle real valued
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output variables (regression trees). In this section we
compare the performance of CART and PRIM on several
data sets from the perspective of function maximization.
The ®rst is synthetic data deliberately designed to illus-
trate the advantage of the patient strategy employed
by PRIM. The others are the two geology and three
marketing examples discussed respectively in Sections 11
and 15.

As with PRIM's other competitors, CART o�ers no
user control over the mean-support trade-o� of the rules
it produces. Therefore, to make the results of the two
procedures comparable the following procedure was em-
ployed. CART was ®rst applied to the data set. Its best J
rules (terminal nodes) in terms of highest predicted output
value were identi®ed. PRIM was then applied to the same
data set to sequentially induce J boxes through the cov-
ering technique (Section 6). The mean-support trade-o� of
each box was chosen to match either the mean or support
of the corresponding CART rule, depending on which one
could be matched most closely. The relative power of the
respective rules can then be compared in terms of the
corresponding unmatched quantity. If the supports are
similar then the one with the higher mean is better; if their
means are similar the one with the larger support is bet-
ter. In all cases the data was divided into the same
learning and test sets (Section 9) for both procedures. The
peeling fraction a (7.5) was taken to be 10% �a � 0:1� for
PRIM.

19.1. Synthetic example

The synthetic data consisted of N � 10 000 observations
with n � 10 input variables randomly drawn from a uni-
form distribution fxj � U �ÿ1; 1�g101 . The target function
was taken to be

y � f �x� �
YJ

j�1
xj: �19:1�

This target has 2Jÿ1 maxima of equal value. Here we il-
lustrate with J � 3 so that there are 4 maxima at alter-
nating corners of the cube de®ned by the ®rst three input
variables. Table 3 compares the performance of CART and
PRIM on this problem.

The left subtable shows the mean �yk and support bk ��
100) for the best four CART rules as averaged over ten
(randomly) replicated data sets. The right subtable shows
these quantities for the corresponding PRIM rules aver-
aged over the same set of replications. The quantity
``coverage ratio'' is intended as a single summary mea-
sure of relative performance. It is the ratio of the
``coverage''

C �
X4
k�1
��yk ÿ �y� � bk �19:2�

of PRIM to that of CART. Here �y is the global mean (1.8).
In this sense (19.2) PRIM's coverage is (on average) almost
four times that of CART for this problem.

This example (19.1) is intended to emulate situations in
which the initial set of splits (CART) or peels (PRIM) are
not well de®ned. In this case the target function provides
no information on how to choose (at minimum) the ®rst
two. Splits/peels are selected randomly until two of the ®rst
three inputs have been selected. From that point on there is
information to direct further splitting/peeling. Here PRIM
dramatically out-performs CART owing to its patient
strategy. Because each peel removes only 10% of the data,
there tends to be much more data remaining when the
target function structure is ``revealed'', allowing subse-
quent peels to increase target mean. With CART there is
typically much less data left at the corresponding point
along each branch of the decision tree.

PRIM found each of the target's four maxima with its
®rst four rules on all ten trials. The reason why later rules
do better than earlier ones here is a consequence of the
covering strategy. Removing each successive maximum
reduces the target symmetry over the remaining data. This
allows its structure to be uncovered earlier in the peeling
sequence.

The di�culty of this problem represents a limit for
CART. Making the problem more di�cult by increasing
the number of inputs to n= 20, or reducing the sample size
to N = 1000, or setting J = 4 in (19.1) to produce eight
maxima, causes CART not to produce a tree. It fails to
detect su�cient structure in the target function and its
pruning algorithm subsequently removes all splits. In all of
these more di�cult cases PRIM continued to ®nd all the
target maxima with its ®rst 2Jÿ1 boxes.

19.2. Data examples

As noted, the synthetic example (19.1) was speci®cally
contrived to exploit PRIM's advantages. One would not
expect such large improvements over CART in most situ-
ations. Tables 4±8 show corresponding results to those of
Table 3 (three rules only) for the two geology examples in
Section 11 and the three marketing examples in Section 15
respectively.

Table 3. Performance on the synthetic data example

CART PRIM

k �yk bk(%) k �yk bk(%)

1 0.29 1.4 1 0.28 4.2
2 0.24 1.3 2 0.31 3.3
3 0.19 1.4 3 0.32 3.5

4 0.14 1.9 4 0.34 3.1

Coverage ratio = 3.9
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The rules induced by PRIM are seen to be either com-
parable to or better than those of CART, sometimes sub-
stantially so. This is especially the case for the marketing
data. The coverage ratio averaged over these ®ve examples
is 1.45. PRIM's coverage is on average 45% higher than
that of CART.

In all but one example (Table 19.3) CART produced
very large trees (50±200 terminal nodes). Most of its rules
were far more complex than those produced by PRIM.

Techniques analogous to C4.5 rules [Quinlan (1994),
(1995)] might help simplify the CART rules in this context.
CART was used with all parameter settings at their default
values. These are presumably tuned for regression analysis
where the goal is target function approximation over the
entire input space. It is conceivable that there are other
settings that are more appropriate for optimization.
Finally, it should be noted that the rules summarized in
Tables 4±8 are generally not the same ± nor as good ± as
the corresponding ones presented in Sections 11 and 15.
The mean-support trade-o�s were selected here to align
with those produced by CART, rather than to produce the
most favorable joint (mean-support) values.

20. Summary

PRIM is intended as an addition to the data analyst's tool
kit, to be used when the goal is either explicit (Section 3) or
implicit (Section 4) optimization. Its distinguishing char-
acteristics include patient peeling/pasting (Sections 7 and 8)
coupled with multiple trajectories (Sections 13 and 14) to
enhance power and stability, and intimate user involvement
in the model selection process (Sections 9, 10, 13 and 14.1).
It tends to produce parsimonious interpretable descriptions
of the structure it uncovers (Sections 11, 15, and 16), and on
the problems considered here (Section 19) exhibits perfor-
mance superior to comparable procedures such as CART
that are intended for function approximation. The extent to
which this performance gain generalizes to other situations
remains to be established. As with all learning procedures,
relative performance will likely be problem dependent.
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Discussion on the paper
by Friedman and Fisher

Willi Kloesgen (German National Centre for Information
Technology (GMD))
Bump hunting or patient rule induction (PRIM) is a new
data mining method for identifying subgroups (boxes) with
a high average value of a designated target variable. PRIM
is highly user centered and based on a patient neighbor
operator for hill climbing search. Its typical application
scenario is a data mining situation where the analyst wants
to identify some few best subgroups in a highly interactive
analysis mode, introducing her or his domain knowledge
supported by various visualizations of evaluation trade-
o�s, sensitivities and multicollinearities for competing
subgroup candidates. The main advantages of the method
are the higher quality of the search results due to a large
hypothesis space and a patient hill climbing strategy, as well
as the supporting interaction and visualization features.
The main disadvantages of the method are the drawbacks
given by the covering search approach and its implicit dif-
ference set based interpretation of subgroup descriptions,
the limitations of the discretization approach which e.g.
does not identify any u-form dependencies, the probably
higher computational requirements of large hypothesis
spaces, the restriction on target variable averages to mea-
sure subgroup quality, and a missing statistical signi®cance
evaluation of high subgroup averages. Speci®cally, the
dissimilarity measure for subgroups needs more justi®ca-
tion, a measure based on the overlapping of subgroups (e.g.
intersection related to union) could be more reasonable.

The PRIM method can be seen as a special case of
subgroup mining. We now summarize how PRIM can be
adapted for general subgroup mining tasks referring to the
constitutive aspects of the subgroup mining approach.

Description language

The description language to build subgroups used by
PRIM allows internal disjunctions of values of a variable
and thus implies very large hypothesis spaces. Especially
for nominal variables with a large number of values, tax-
onomies (hierarchies on the value domain) would be nec-
essary to restrict search, exclude nonsense disjunctions of
values, and present the results on the appropriate hierar-
chical level, while still preserving patient neighbors.

Data analysis problems

Optimizing average values of a target variable is appro-
priate for binary and continuous target variables. For
ordinal targets (radio listening example in section 15; or-
dered values: never, occasionally, regularly), other quality
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